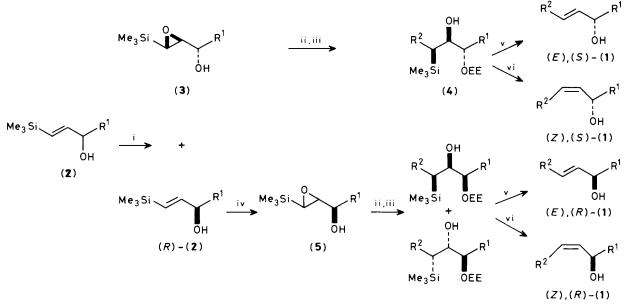
1323

A Practical, Efficient Method for Preparation of Four Possible Stereoisomers of Secondary Allylic Alcohols using Kinetic Resolution of (*E*)-1-Trimethylsilylalk-1-en-3-ol by the Sharpless Process

Yasunori Kitano, Takashi Matsumoto, and Fumie Sato*


Department of Chemical Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152, Japan

Kinetic resolution of (*E*)-1-trimethylsilylalk-1-en-3-ol by the Sharpless process, which proceeds with very large rate differences for the two isomers, combined with the reactivity of epoxysilyl compounds affords a practical, efficient method for preparation of four possible stereoisomers of secondary allylic alcohols.

Allylic alcohols are valuable intermediates in a number of synthetic organic processes, and their synthesis in an optically active form has attracted much interest in recent years.¹ We now report a practical method for preparation of four possible stereoisomers of secondary allylic alcohols (1), *i.e.*, (E),(S)-(1), (Z),(S)-(1), (E),(R)-(1), and (Z),(R)-(1), starting from a single racemic material and using a single chiral source. Our method shown in Scheme 1 involves a highly effective kinetic resolution of (E)-1-trimethylsilylalk-1-en-3-ol (2) using the Sharpless process as the key step.^{1a}

The alcohols (2) which have (*E*)-configuration can be prepared specifically by the reaction of lithium trimethylsilylethynylide with aldehydes followed by reduction of the resulting adducts (6) via $(\eta^5-C_5H_5)_2$ TiCl₂-catalysed hydromagnesiation with BuⁱMgBr as exemplified by Scheme 2.² We found that the reduction of (6) with LiAlH₄³ provided a mixture of (*E*)- and (*Z*)-isomers in a ratio of 5:1.

A preliminary experiment revealed that the asymmetric epoxidation of (2) proceeds with much variation in rate for the two isomers. Thus, to speed up the reaction, the kinetic

EE = ethoxyethyl

Scheme 1. Reagents: i, Bu'OOH, L-(+)-di-isopropyl tartrate, Ti(OPrⁱ)₄; ii, CH₂=CH(OEt), H⁺; iii, R²MgBr, CuI; iv, Bu'OOH, VO(MeCOCHCOMe)₂; v, KH, tetrahydrofuran then HCl; vi, H₂SO₄, MeOH.

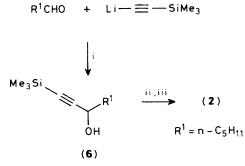
Table 1. Optical purity of (R) -(2)	and (3) in the kinetic resolution of
racemic (2) vs. reaction time. ^a	

		Enantiomeric purity (% e.e.) ^b		
Entry	Reaction time (h)	$(R)-(2,R^1 = n-C_5H_{11})$	$(3, R^1 = n - C_5 H_{11})^c$	
1	7	>99	>99	
2	10	>99	98.6	
3	18	>99	97.6	

^a Reaction performed as follows, 1.0 equiv. of Ti(OPrⁱ)₄, 1.2 equiv. of L-(+)-di-isopropyl tartrate, 1.0 equiv. of racemic (2), and 1.5 equiv. of anhydrous TBHP are stirred in dry CH₂Cl₂ [8.8 ml/mmol of (2)] at -20 °C. Yields of recovered (*R*)-(2) and (3) are respectively more than 49%, checked by ¹H n.m.r. analysis. Isolated yields of (*R*)-(2) and (3) were in the range 39–45%. ^b The enantiomeric excesses were determined by ¹H n.m.r. analysis on the corresponding allylic acetate (pyridine/Ac₂O) in the presence of (-)-tris[di(perfluoro-2-propoxy-propionyl)methanato]praseodymium(u) [(-)-Pr(DPPM)₃] and on the corresponding epoxy acetate in the presence of (+)-Eu(DPPM)₃ (ref. 6). ^c No *threo* epoxy alcohol was detected.

resolution was carried out using a rather large excess of t-butyl hydroperoxide (TBHP). Table 1 gives the relationship of the enantiomeric purity of the epoxy alcohol produced and the unreacted allyl alcohol to reaction time when the kinetic resolution of (*E*)-1-trimethylsilyl-oct-1-en-3-ol (**2**, $\mathbb{R}^1 = n-\mathbb{C}_5H_{11}$) was carried out using 1.5 equiv. of anhydrous TBHP. Entry 1 in Table 1 shows that the kinetic resolution goes almost to completion in 7 h to afford (**3**, $\mathbb{R} = n-\mathbb{C}_5H_{11}$) with more than 99% e.e. and (*R*)-(**2**, $\mathbb{R}^1 = n-\mathbb{C}_5H_{11}$) with more than 99% e.e., † Allowing the reaction to run for 10 h (entry 2) or 18 h (entry 3) scarcely alters the enantiometic purity of (**3**, $\mathbb{R}^1 = n-\mathbb{C}_5H_{11}$) nor the yield of (*R*)-(**2**, $\mathbb{R}^1 = n-\mathbb{C}_5H_{11}$). These results indicate that the rate of the epoxidation reaction

Table 2	Yields and	rotations	of (1	$P_{1} =$	n-C H	$\mathbf{p}_2 = \mathbf{p}_1$	en)
Laule 2.	T leius anu	TOTATIONS	οι (Ι,	K -	$\Pi^{-}C_{5}\Pi_{11}$,	$\mathbf{R}^{\mu} = \mathbf{r}$	L").


Allylic alcohol	Yield (%)	$[\alpha]_{D^{25}}(c \text{ in CHCl}_{3})$
$(E),(S)-(1)^{a}$	77c	$-5.1^{\circ}(1.26)$
(Z),(S)-(1)	51°	$-24.3^{\circ}(0.99)$
(E),(R)-(1)	61 ^d	$+4.9^{\circ}(1.27)$
(Z),(R)-(1) ^b	41 ^d	+24.9° (1.06)

^a The optical purity was confirmed by converting into (*S*)-(-)acetoxyheptanal *via* ozonolysis after acetylation. $[\alpha]_D^{20} - 38.3^{\circ}$ (*c* 0.58, CHCl₃) {lit.⁹ $[\alpha]_D^{20} - 37.8^{\circ}$ (*c* 0.5, CHCl₃)}. ^b (*R*)-(+)-2-acetoxyheptanal obtained; $[\alpha]_D^{20} 38.0^{\circ}$ (*c* 0.60, CHCl₃). ^c Based on (**3**). ^d Based on (*R*)-(**2**).

between two enantiomers of (2) differs significantly. We confirmed this point by carrying out the epoxidation of (R)-(2, $R^1 = n-C_5H_{11}$) by using L-(+)-di-isopropyl tartrate (mismatched pair) and 1.5 equiv. of TBHP which afforded the epoxidation product(s) in less than 1.7% yield after 18 h reaction.

Compound (3) thus obtained can be readily converted into either (E),(S)-(1) or (Z),(S)-(1) by the procedure shown in Scheme 1.7 Thus, protection of $(3, R^1 = n-C_5H_{11})$ as an ethoxyethyl ether followed by treatment with PrnMgBr in the presence of a catalytic amount of CuI (20%) afforded (4, R^1 = n-C₅H₁₁, R^2 = Prⁿ), from which (*E*),(*S*)-(1, R^1 = n-C₅H₁₁, $R^2 = Pr^n$ or $(Z), (S)-(1, R^1 = n-C_5H_{11}, R^2 = Pr^n)$ was synthesized by treatment with KH in tetrahydrofuran (5 °C for 1.5 h) or H_2SO_4 in MeOH (room temperature for 2 h) respectively. Similarly, two other possible stereoisomers of allylic alcohols (E), (R)- $(1, R^1 = n$ - $C_5H_{11}, R^2 = Pr^n)$ and $(Z),(R)-(1, R^1 = C_5H_{11}, R^2 = Pr^n)$ were prepared from (*R*)-(2, $R^1 = n-C_5H_{11}$) after converting into the epoxy alcohol $(5, R^1 = n-C_5H_{11})$ (threo: erythro = 1:3) using TBHP- $VO(MeCOCHCOMe)_{2^8}$ (Scheme 1). Overall yields and the specific rotations of the alcohols (1) thus prepared are summarized in Table 2. Although the $[\alpha]_D$ values of the pairs of enantiomers indicate that conversion of (2) or (3) into (1) proceeds without racemization, this was confirmed by con-

[†] Preparation of optically active β-methyl-γ-(trimethylsilyl) homoallyl alcohols⁴ and γ ,δ-epoxy-β-methyl-γ-(trimethylsilyl)alkanols⁵ has been reported.

Scheme 2. Reagents: i, Et₂O, -30-25 °C, 96%; ii, 2BuⁱMgBr/(η^{5} -C₅H₅)₂TiCl₂, 27 °C, 7 h; iii, H⁺, 96%.

verting (E),(S)- $(1, R^1 = n-C_5H_{11}, R^2 = Pr^n)$ and (Z),(R)- $(1, R^1 = n-C_5H_{11}, R^2 = Pr^n)$ into 2-acetoxyheptanal by ozonolysis after acetylation and comparing the rotation with the literature value (see Table 2).

The present synthesis is characterized as providing a 'selective and operationally simple route to all the possible stereoisomers of secondary allylic alcohols with high optical purity' starting from (E)-1-trimethylsilylalk-1-en-3-ol.

Received, 13th May 1986; Com. 643

References

- For a recent preparation of optically active secondary allylic alcohols, see: (a) V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda, and K. B. Sharpless, J. Am. Chem. Soc., 1981, 103, 6237; (b) R. Noyori, Pure Appl. Chem., 1981, 53, 2315; (c) J. Fujiwara, Y. Fukutani, M. Hasegawa, K. Maruoka, and H. Yamamoto, J. Am. Chem. Soc., 1984, 106, 5004; (d) T. Sato, Y. Gotoh, Y. Wakabayashi, and T. Fujisawa, Tetrahedron Lett., 1983, 24, 4123.
- 2 F. Sato, H. Watanabe, Y. Tanaka, and M. Sato, J. Chem. Soc., Chem. Commun., 1982, 1126; F. Sato and H. Katsuno, Tetrahedron Lett., 1983, 24, 1809.
- 3 E. J. Corey, J. A. Katzenellenbogen, and G. H. Posner, J. Am. Chem. Soc., 1967, 89, 4245.
- 4 Y. Kobayashi, Y. Kitano, and F. Sato, J. Chem. Soc., Chem. Commun., 1984, 1329.
- 5 Y. Kobayashi, H. Uchiyama, H. Kanbara, and F. Sato, J. Am. Chem. Soc., 1985, 107, 5541.
- 6 N. Ishikawa. H. Honda, and F. Yamaguchi, presented at the Annual Meeting of Japan Chemical Society, April 1983, Tokyo.
- 7 E. W. Colvin, 'Silicon in Organic Synthesis,' Butterworths, London, 1981, ch. 12; W. P. Weber, 'Silicon Reagents for Organic Synthesis,' Springer-Verlag, New York, 1983, ch. 6; P. F. Hudrlik, D. Peterson, and R. J. Rona, J. Org. Chem., 1975, 40, 2263.
- 8 H. Tomioka, T. Suzuki, K. Oshima, and H. Nozaki, *Tetrahedron Lett.*, 1982, **23**, 3387; A. S. Narula, *ibid.*, 1982, **23**, 5579.
- 9 R. Noyori, I. Tomino, and M. Nishizawa, J. Am. Chem. Soc., 1984, 106, 6717.